Assumptions:
- Volatility smile = $0.15 - 0.1\times (K-K_{ATM}) + 0.1 \times (K-K_{ATM})^2 $
- Sticky strike
- Flat volatility term structure
Since $\Theta$ and Vega are similar to $\Gamma$, we skip presenting those. We are showing:
- Price
- Delta
- Gamma
- Vanna
- Volga
- Charm
- $ \frac {\partial}{\partial t} Vega$
Note:
$Vanna = \frac{\partial}{\partial S} \frac{\partial P}{\partial \sigma}$
$Volga = \frac{\partial^2 P}{\partial \sigma^2}$
$Charm = \frac{\partial}{\partial S} \frac{\partial P}{\partial T}$
Strangle
Short Bear Spread
Back Spread
Calendar Spread
Diagonal Spread
Butterfly
Broken Wing Butterfly
Iron Condor
No comments:
Post a Comment