This is a short note on computing the time integral of a Brownian motion:
$ \int_0^t W_s ds$
In fact I should have said the moments of such an integral. The first moment is just
$ E[\int_0^t W_s ds] = \int_0^t E[W_s] ds = 0$
The second moment is
\begin{align*} E[\int_0^t W_s ds \int_0^t W_u du] & = E[\int_0^t \int_0^t W_s W_u ds du] \\ &= \int_0^t \int_0^t E[W_s W_u] ds du \\ &= \int_0^t \int_0^t min(u,s) ds du \\ &= \int_0^t \int_0^s u du ds + \int_0^t \int_s^t s du ds \\ &=\int_0^t \frac {s^2} {2} ds+\int_0^t (ts-s^2) ds \\ &= \frac {t^3}{3}\end{align*}
\begin{align*} E[\int_0^t W_s ds \int_0^t W_u du] & = E[\int_0^t \int_0^t W_s W_u ds du] \\ &= \int_0^t \int_0^t E[W_s W_u] ds du \\ &= \int_0^t \int_0^t min(u,s) ds du \\ &= \int_0^t \int_0^s u du ds + \int_0^t \int_s^t s du ds \\ &=\int_0^t \frac {s^2} {2} ds+\int_0^t (ts-s^2) ds \\ &= \frac {t^3}{3}\end{align*}
The trick is to separate the min function into two
regimes.
No comments:
Post a Comment